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1
NON-VOLATILE LOGIC BASED
PROCESSING DEVICE

RELATED APPLICATION(S)

This application claims the benefit of U.S. Provisional
Application No. 61/881,687 filed Sep. 24, 2013 and U.S.
Provisional Application No. 61/886,901 filed Oct. 4, 2013,
both of which are incorporated by reference in their entire-
ties herein.

TECHNICAL FIELD

This invention relates generally to processing devices that
use non-volatile memory devices.

BACKGROUND

Non-volatile logic (NVL) is a ferro-magnetic random
access memory (FRAM) based state retention technology
that combines characteristics of FRAM memory with cur-
rent data retention methods. Generally speaking, FRAM’s
comprise a non-volatile memory technology that typically
operate by changing the polarity of a capacitor dielectric to
switch between two stable states having corresponding
different capacitive values. These two stable states corre-
spond to stored “1’s” and “0’s.”

More specifically, the fundamental storage element of
FRAM is a ferroelectric capacitor. FIG. 1 illustrates a
ferroelectric capacitor 105 used in a 1'T-1C (one transistor—
one capacitor) FRAM memory cell. The capacitor 105 can
be polarized “up” or “down” by applying a positive or
negative electrical field to it. The voltage for this operation
is provided by a standard MOSFET circuit in a WL/BL/PL
(word line/bit line/plate line) based memory circuit with a
transistor 110. Consequently, the FRAM behaves similar to
DRAM (dynamic random access memory) with regard to
changing the charge of the capacitor. The primary difference
is that a ferroelectric capacitor retains its state permanently.

Major characteristics of FRAM include: 1) FRAM is
nonvolatile, implying that the data information is retained
when no power is attached to the FRAM cell; 2) FRAM has
similar read/write times compared to SRAM (static random
access memory) and provides random access without
memory segmentation; 3) the write energy is extremely low
because FRAM can be accessed by a default power domain,
VDD, in a system on a chip (SoC) architecture and does not
require a charge pump like flash memory; and 4) FRAM
provides higher endurance compared to floating gate memo-
ries because FRAM accesses do not degrade to the storage
cell.

Thus, FRAM combines the advantages of RAM and
nonvolatile memories, particularly with respect to having
short read/write times, which are similar to SRAM, and low
power consumption. Moreover, FRAM provides practically
unlimited endurance because the read/write cycles of a
single cell are in the order of 10'° cycles.

The ferroelectric capacitor consists of a film of crystalline
structure between the two electrode plates. FIG. 2 illustrates
the crystal in detail. The ferroelectric dipole is formed by a
zirconium/titanium (Zr/Ti) atom and oxygen (O) atoms
within the lead (Pb) crystal. The material is therefore called
lead-zirkonate-titanate (PZT).

By applying an appropriate electrical field across the
crystal, the mobile Ti atom moves from one stable state (“Up
Polarization™) to another stable state (“Down Polarization™)
within the crystal lattice. With increasing field strength the
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mobile atom crosses the barrier formed by the O atoms and
flips to the second stable state, thus changing the polariza-
tion state of the unit cell. Because the state of the mobile Ti
atom is retained after the power is removed, the ferroelectric
dipole is non-volatile. The behavior of the PZT material
results in a hysteresis loop, which can be compared to the
magnetic BH curve.

In a read process, the current charge of the ferroelectric
capacitor is sensed by using the ferroelectric capacitor as
one capacitor in a capacitor divider. Depending on the stored
data, one of two different voltages are gained on the bitline
placed as the middle node of the capacitive divider, which
voltages are then developed by a sense amplifier. Because
this procedure has impact on the current state of the dipole,
the read value has to be restored into the capacitor again.
This step usually takes place directly in the same read
sequence. The write and read control sequences are already
known from current DRAM operations.

SUMMARY

Generally speaking and pursuant to the following embodi-
ments, a processing device is configured to boot or wake
using a one or more non-volatile logic element arrays that
store a machine state of the processing device. While
ferro-electric (FRAM) based non-volatile technology is used
within this disclosure to show one potential approach, those
skilled in the art can easily see that other non-volatile
memory technologies can be used to implement the NVL
arrays and program/data storage that are described. Some
examples of alternative non-volatile technologies are
MRAM, spin-torque MRAM, RRAM, FLLASH, and the like.

More specifically, a standard boot sequence is used to
implement a first portion of a boot or wake process to
determine a first portion of data and restoring, in parallel
with the standard boot sequence, a second portion of data
from the one or more non-volatile logic element arrays. A
data corruption check is performed on the second portion of
data. If the data corruption check confirms the second data’s
validity, a standard boot sequence is used to implement a
third portion of the boot to restore a third portion of data. If
the data corruption check determines that the second data is
invalid or that the boot is an initial boot such that the one or
more non-volatile logic element arrays are empty, a standard
boot sequence is executed to determine the second portion of
data, which is then stored in the one or more non-volatile
logic element arrays. This approach can be used, for
example, to restore trimming and calibration data for the
processing device while eliminating the time used to restore
such data using a standard boot sequence. Energy savings
are also realized in such an approach. In a worst case where
the second portion of data is found invalid, the processing
device boots in a same amount of time as using a standard
boot sequence.

By one approach, the processing device may use other
non-volatile devices for other aspects of the boot and/or
wake process. In such a case, the processing device may be
configured to restore the second portion of the data during a
portion of the boot and/or wake process that is not otherwise
reading data from other non-volatile devices to avoid over-
loading the power domain in which the other non-volatile
devices operate.

By still another approach, control and test registers can be
added to the processing device, which registers can be
accessible by user code during a user mode of the processing
device. So configured, a user can directly inspect the data
state of the one or more non-volatile logic element arrays for



US 9,454,437 B2

3

monitoring and testing the operation of the processing
device. These and other benefits can be determined through
study of the accompanying figures and description.

BRIEF DESCRIPTION OF THE DRAWINGS

The above needs are at least partially met through provi-
sion of the non-volatile logic based processing device
described in the following detailed description, particularly
when studied in conjunction with the drawings, wherein:

FIG. 1 comprises a circuit diagram of a prior art FRAM
implementation;

FIG. 2 comprises a molecular diagram of a prior art
implementation of a crystal used in an FRAM implementa-
tion;

FIG. 3 comprises a schematic diagram of an NVL array
configuration in accordance with various embodiments of
the invention;

FIG. 4 comprises a schematic diagram of an NVL data flip
flop configuration in accordance with various embodiments
of the invention;

FIG. 5 comprises a functional block diagram of a pro-
cessing device as configured in accordance with various
embodiments of the invention;

FIG. 6 comprises a functional diagram of a data flip flop
circuit;

FIG. 7 comprises a flow diagram of an example operation
of a processing device as configured in accordance with
various embodiments of the invention;

FIG. 8 comprises a schematic diagram of an example
NVL implementation in a processing device as configured in
accordance with various embodiments of the invention; and

FIG. 9 comprises a timing diagram illustrating interleaved
timing of accessing an FRAM device versus accessing an
NVL array during a boot sequence in accordance with
various embodiments of the invention;

FIG. 10 comprises a timing diagram of an example
standard cold boot sequence;

FIG. 11 comprises a timing diagram of an example
standard boot sequence from a low power mode;

FIG. 12 comprises a timing diagram comparing timing of
an example standard boot sequence from a low power mode
and an example boot sequence from a low power mode using
an NVL array approach in accordance with various embodi-
ments of the invention;

FIG. 13 comprises a timing diagram comparing timing of
an example standard boot sequence from a cold boot and an
example boot sequence from a cold boot using an NVL array
approach in accordance with various embodiments of the
invention;

FIG. 14 comprises a timing diagram comparing timing of
an example standard boot sequence from a low power mode
and an example boot sequence from a low power mode using
an NVL array approach with a parity check fail in accor-
dance with various embodiments of the invention;

FIG. 15 comprises a timing diagram comparing timing of
an example standard boot sequence from a cold boot and an
example boot sequence from a cold boot using an NVL array
approach with a parity check fail in accordance with various
embodiments of the invention;

FIG. 16 illustrates an NVL configuration logic state
diagram in accordance with various embodiments of the
invention.

Elements in the figures are illustrated for simplicity and
clarity and have not necessarily been drawn to scale. For
example, the dimensions and/or relative positioning of some
of the elements in the figures may be exaggerated relative to
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other elements to help to improve understanding of various
embodiments. Also, common but well-understood elements
that are useful or necessary in a commercially feasible
embodiment are often not depicted in order to facilitate a
less obstructed view of these various embodiments of the
present invention. Certain actions and/or steps may be
described or depicted in a particular order of occurrence
while those skilled in the art will understand that such
specificity with respect to sequence is not actually required.
The terms and expressions used herein have the ordinary
technical meaning as is accorded to such terms and expres-
sions by persons skilled in the technical field as set forth
above except where different specific meanings have other-
wise been set forth herein.

DETAILED DESCRIPTION

Referring now to the drawings, and in particular to FIG.
3, it may be helpful to first briefly describe one approach to
non-volatile logic array technology. In this example
approach, NVL technology provides state retention for a
processing device called a “system on a chip” or SoC by
storing/restoring data from DFFs to/from non-volatile logic
arrays (henceforth abbreviated as NVL arrays). It will be
understood that the teachings provided here can be applied
to other processing device architectures and non-volatile
memory technologies other than FRAM (for example,
MRAM, spin-torque MRAM, RRAM, FLASH, and the
like). Generally speaking, the current state of a retention
data flip flop (RDFF, used to store system operation data) is
stored to NVL arrays before the internal power for the
processing device for a given domain is lost. When the
domain is powered again, the data is directly restored from
NVL arrays to the RDFFs. This procedure makes even the
powering of the retention latch during a low power mode
unnecessary. The NVL arrays consist of one or more arrays
in which each array can have the same organization or can
be uniquely configured per NVL array instance. For
example, each array can be configured as an array of X
entries (e.g., array rows) by Y bits (e.g., number of bits per
row). Typically, these NVL arrays are distinct in construc-
tion and usage as compared to non-volatile code/data
memory as implemented in the processing device’s design.
In this example, the non-volatile storage is provided in
arrays having 256 FRAM based non-volatile logic bitcells.
Because the NVL structure is based on multiple NVL arrays,
they can be placed next to the NVL data flip flop (DFF)
clouds to optimize routing overhead in the chip layout.

In the example of FIG. 3, the NVL array 305 contains the
FRAM cells (although other non-volatile technologies such
as MRAM, spin-torque MRAM, RRAM, FLLASH, and the
like can be used as the non-volatile storage element used
inside NVL arrays). NVL DFFs 310 are grouped in clouds
of 31 bits and are connected to the NVL array 305 via an
8-to-1 multiplexer 315. The NVL controller 320 coordinates
the NVL operations. For instance, the operations of the NVL
controller include triggering the control signals of the NVLL
DFFs, providing the control sequences to the NVL array, and
handling the data input multiplexer.

To control the NVL array in the SoC example, the NVL
controller 320 supports the following main different opera-
tions: Write-to-NVL storage, Read-from-NVL storage,
Read-from-NVL storage (incl. Writeback), and Initialize
FRAM in addition to a number of other specialized opera-
tions needed for device testing and debug. As explained
above, one of the FRAM characteristics is that a read
operation from the bitcell is destructive and the value must
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be written again into the bitcell (hence the definition of a
read-with-writeback operation). Moreover, the NVL tech-
nology features a parity function to check whether the NVL
array content is corrupted. Therefore in each row access a
parity value is generated and evaluated. If the parity result
is invalid, the NVL controller will stop the current operation
and deliver a fail signal.

In this example, the NVL array 305 consists of eight rows,
each containing 32 bits (e.g. 31 data bits plus one parity
bit=32 bits in total per row). Because a parity value is stored
in every row, the effective size of one NVL array is overall
248 bits. Moreover, the FRAM cells in the example NVL
array are built on a unique 4C-12T architecture including a
local sense amplifier to improve robustness by creating high
read signal margins of the ferroelectric capacitors. Other
design approaches and use of other non-volatile memory
technologies, however, are possible.

The NVL DFFs are basic RDFFs but with 2 modifications
to provide NVL functionality. The adjustments concern the
slave latch of the RDFF and are illustrated in FIG. 4. To be
able to transfer the data from the NVL array to the DFFs, an
additional data input (ND) was added to the slave stage of
the RDFF. The data update process is enabled by a dedicated
NVL update signal (NU), which is provided by the NVL
controller. After the update signal is triggered, the current
data from the NVL array is transferred into the DFF.
Through adding only an input to the RDFF, the NVL DFF
retains all functions of the default DFF with negligible
impact to the speed and power consumption of the RDFF.

The NVL arrays operate within the context of a process-
ing device. FIG. 5 illustrates one such processing device
within which the NVL arrays and functionality described in
this disclosure may be applied, although other processing
devices and architectures can use such arrays and function-
ality. The figure illustrates a mixed signal processor includ-
ing a 16-bit CPU (central processing unit), dedicated code/
data memory, and various peripheral components connected
by a 16 bit wide address/data bus.

The processing device’s design allows for different
peripheral configurations to serve a wide range of applica-
tions. FIG. 5 depicts one example architecture in a func-
tional block diagram with all available peripherals. The
peripheral set includes for instance an A/D converter, a
comparator, Watch Dog Timer (WDT), 12C/SPVUART
serial communication peripheral(s), Direct Memory Access
(DMA) module, hardware multiplier, real-time-clock,
capacitive 1/O system, and a set of timers.

One feature of the processing device is, besides its wide
application range, low energy consumption. The operating
power of the processing device can be lowered to a level
consuming current less than 1 pA. This low value is reach-
able because the processing device contains a peripheral
structure with modular activity, flexible clocking modes, and
an advanced energy management that refers to one or more
different low power modes (LPMs). When the processing
device is active, implying the CPU is operating, the device
has the highest energy consumption of approximately 100
LA/MHz. During the low power modes, several modules are
powered down to save energy, such as the CPU, non-volatile
code/data storage module (main FRAM array, or main
FLASH array, or the like used for CPU code/data storage),
or peripherals. The individual connections of the peripherals
from the power supply are based on a dedicated power
domain structure of the processing device. Every power
domain offers a separate switchable power supply which is
able to disconnect the power supply (e.g., VDD) input of the
corresponding module. During the deepest available low
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power modes, LPM3.5 and LPM4.5, the device powers only
basic sustaining circuits like a brownout reset or the I/O
interface. Consequently, the processing device consumes
only 20 nA in LPM4.5. Because LPM3.5 and LPM4.5 have
similar sleep/wakeup processes, they are summarized as
LPMx.5.

One feature of the low power modes is state retention,
which is a method to retain the state of a module (or even of
an entire domain) while the domain is powered down. By
maintaining the state of the module, the corresponding
functionality is ensured when the device wakes up again
such that no additional re-configuration or re-boot is
required. State retention refers particularly to maintain the
contents of sequential logic memory cells such as flip-flops,
latches, and the like.

State retention is, for instance, provided by an implemen-
tation of specific retention data flip-flops (RDFFs) in data
registers. FIG. 6 illustrates schematically the structure of an
RDFF. More specifically, the default DFF contains a reten-
tion latch that retains the state during a low power mode.
This retention latch has a dedicated VDD line that is always
powered. When the retention signal (RETAIN) of the RDFF
is enabled, the current DFF logic value is maintained within
the retention latch by an always on voltage supply. Thus, the
entire power domain is prepared for a shut down. If the
power domain is powered again in the wakeup process, the
data of the retention latch will be available and enables logic
operations to resume. Hence, the data registers obtain their
initial state as before entering the low power mode.

During certain low power modes, however, state retention
is not applied to the configuration flops of particular mod-
ules, such as the RTC and I/O module. As a consequence, the
control registers in these modules have to be re-configured
manually by user instructions after wakeup from those low
power modes. Additionally, the processing device contains
several modules that are operating with mixed (analog/
digital) signals. The mixed signal operations require precise
analog reference parameters for several analog functions.
Therefore, general common (family) trim or individual
die-specific calibration values are applied to meet the
required analog performance. These methods are referred to
collectively as “trim/cal,” and the data related with these is
referred to as “trim/cal data.”

Typically, every processing device must pass a final
production test in which the analog calibration parameters
are determined. For instance in an initial configuration
process, the compensation values are calculated, stored to
the embedded memory of the processing device, and trans-
ferred to the mixed signal peripherals during a boot phase.
The trimming and calibration effect is volatile because the
modules are not retaining the trim/cal data when the device
is powered down or entering into a deep sleep low power
mode. Thus, the trim/cal values are applied to the appropri-
ate modules from the embedded memory at device startup,
reset, and wakeup from the deep low power mode.

In one application, the trimming and calibration method is
applied to following analog modules: ADC (Analog-Digital-
Converter); CS (Clock System); REF A (Shared Reference);
COMP (Comparator); PMM (Power Management Module);
and TEST TOP (Generic Test Register Top Module).

The trim/cal data is written into dedicated registers during
the digital bootcode execution. This part of the digital
bootcode execution is called the trimming and calibration
sequence (trim/cal sequence). The registers used for this
purpose are generic test registers, which are separate regis-
ters for test, debug, and trim/cal purpose. From the generic
test registers, the trim/cal DFF outputs are connected to the
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analog part of the module. For instance, there are 4 bits
inside a REF A generic test register to adjust the REF A
internal bandgap reference to corresponding voltage levels.
The generic test registers are integrated into all analog
modules and are built on the same uniform structure. The
number of the generic test registers in each module differs
and is related to the requirements and scope of every trim/cal
module.

Additionally, NVL arrays can be used directly by end user
applications. Through fast and low energy store of data
contents, it is possible to backup the SOC state upon
interruption of the external power supply. To realize this
idea, the power supply of the SOC must provide the required
energy for the NVL operations to complete. In current NVL
based devices, a dedicated internal or external capacitor
provides the energy for NVL based operations after the
power loss of the device. In addition, the user might be
interested in data or signals for monitoring the device or that
indicate a cause of shutdown for the device. This data can
also be stored during the shutdown process and read in the
next user mode.

Generally speaking, therefore, and with reference to
FIGS. 7 and 8, the processing device 800 can operate 705
using plurality of storage elements, which can be volatile or
non-volatile, to execute at least one function. The processing
device 800 in this instance includes a one or more non-
volatile logic (NVL) arrays 805, a plurality of data flip flop
circuit elements 810 (illustrated as being standard retention
style flip flop circuits with an additional NVL data port on
the slave stage, but may be non-retention flip flop circuits
with an additional NVL data port on the slave stage in other
approaches), and a data flip flop multiplexer 815 connected
to pass data from the plurality of data flip flop circuit
elements 810 to the one or more NVL arrays 805. The
processing device 800 further includes at least one process-
ing element 820 configured to execute a non-volatile con-
figurations logic 822 and a non-volatile logic controller logic
824. Those skilled in the art will recognize and appreciate
that such a processing element 820 can comprise a fixed-
purpose hard-wired platform or can comprise a partially or
wholly programmable platform. It is also possible, however,
to view this illustration as comprising a logical view, in
which case one or more of these elements can be enabled
and realized via a shared platform. It will also be understood
that such a shared platform may comprise a wholly or at
least partially programmable platform as are known in the
art. All of these architectural options are well known and
understood in the art and require no further description here.

The processing element 820 is configured to control the
data flip flop multiplexer 815 and the NVL mini-array 805
to store 710 a machine state represented by the plurality of
data flip flop circuit elements 810 in response to entering a
backup mode. When booting (such as from a cold start) or
waking (such as from a low power mode), the processing
device 800 executes 715 a standard boot sequence to deter-
mine at least a first portion of data for operations executed
by processing device 800. The determination of the data can
include copying data from a non-volatile code/data memory
such as FRAM or Flash memory to the data flip flop circuits,
transferring data from NVL arrays to the NVL data flip flops,
and/or evaluating best suited calibration values. Also, this
first portion of data may be a portion of data not suitable for
restoration from an NVL storage in a given application as
described in the example below.

The device 800 also restores 720, in parallel with the
executing 715 of the standard boot sequence to determine
the at least the first portion of data, at least a second portion
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of data from the one or more non-volatile logic element
arrays 805 for operations executed by the processing device
800. The second portion of data is different from the first
portion of data, which typically would be the case when
reconstituting a machine state during a boot or wake process.
By one approach, this parallel restoration includes restoring
trimming and calibration data relating to a first set of
trimming/calibration modules for the processing device 800.
This would eliminate the need to re-determine the trimming
and calibration data for certain modules where that data is
likely still fully applicable. Also, this restoration 720 can
start after the start of execution 715 of the standard boot
sequence but still be in parallel with a majority of the
standard boot sequence 715 or at least a portion of the
standard boot sequence.

After restoring the second data, the processing device 800
executes a data corruption check 725 for the at least the
second portion of data to confirm validity of the at least the
second portion of data. The data corruption check can be any
suitable data confirmation process such as a parity check,
Error correction/detection code (ECC), or the like. The
phrase “parity check” refers to those aspects that are in
common with various state of the art error detection and/or
correction coding methods that are in use now and in the
future. In response to the data corruption check confirming
validity of the at least the second portion of data, the
processing device 800 executes 730 a standard boot
sequence to determine at least a third portion of data for
operations executed by the processing device 800. The third
portion of data is different from the first portion of data and
different from the second portion of data. On the other hand,
in response to the data corruption check detecting invalid
data, the processing device 800 executes 735 a standard boot
sequence to determine at least the second portion of data for
operations executed by the processing device 800 and
executes 740 a standard boot sequence to determine the third
portion of data for operations executed by the processing
device 800. Thus, if the second data restored from the NVL
arrays is bad or corrupted in some manner, it can be readily
replaced by running the otherwise standard boot sequence.
During a boot process for the computing device, the data
corruption check will determine the presence of invalid data
where there is an un-programmed non-volatile logic element
array of the one or more NVL mini-arrays 805, as may be the
case in a first cold boot for the device. In response to the
determining the presence of invalid data where there is the
un-programmed non-volatile logic element array, the pro-
cessing device 800 executes a standard boot sequence to
determine data for the un-programmed non-volatile logic
element array.

To avoid increased wakeup or boot time in the case of
determining that the restored second data is invalid, the
processing device 800 can store 745, in parallel with the
execution 740 of the standard boot sequence to determine
the third portion of data, in the one or more NVL mini-arrays
805 the second portion of data determined using the standard
boot sequence. In this manner, a later boot or wakeup
process can realize the time and energy savings of restoring
the second data from the NVL arrays 805, and the standard
wake or boot time in determining and saving that second
data is not lengthened because the storage of the second data
happens in parallel with the standard boot process for the
third data.

In the case where the processing device 800 reads data
from non-volatile code/data storage device(s) during the
standard boot sequences for determining the first and third
portions of data, it is possible that these non-volatile code/
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data storage devices operate in the same power domain as
the NVL arrays 805. In this case, to avoid overtaxing the
power supply for the shared non-volatile memory power
domain, the processing element 820 causes the non-volatile
configurations logic and the non-volatile logic controller
logic to execute the storing 745 of second data, in parallel
with the execution of the standard boot sequence to deter-
mine the third portion of data, in the one or more non-
volatile logic element arrays at a time other than when the
standard boot sequence reads code/data from the non-vola-
tile code/data storage devices either when determining the
first or third data. Similarly, the restoring 720 of second data,
in parallel with the executing 715 of the standard boot
sequence to determine the at least the first portion of data,
from the one or more non-volatile logic element arrays can
be controlled to occur at a time other than when the standard
boot sequence reads data from the FRAM devices either
when determining the first or third data. FIG. 9 illustrates the
resulting interleaving of the NVL array activity and the
system code/data accesses to the main non-volatile code/
data storage device. The NVL array activity occurs only
when non-volatile code/data memory is not being accessed.
The interleaving can be controlled or enforced via hardware,
software, or a combination of both techniques. Interleaving
access of the NVL array and the main non-volatile code/data
storage device provide advantages including avoiding the
need to increase the size or capacity of the voltage regulator,
avoiding the need to increase the size of supply decoupling
capacitor, and avoiding the need to increase the quiescent
current of the voltage regulator, all of which reduces the
implementation cost and complexity for the described NVL
architecture implementation. Additionally, the interleaving
can help avoid a processing device execution hazard where
both the NVL and software try to access the same registers
or flip flops at the same time.

Specific examples of the above described boot sequence
using the NVL arrays are illustrated in FIGS. 10-15.
Although these examples illustrate the parallel nature of the
NVL restore happening immediately at the beginning of the
respective boot sequences, this exact timing is not necessary
such that the parallel restore and storing of data can happen
at various points of the standard boot sequence. FIG. 10
shows the schematic draft of a standard cold boot sequence
of the example processing device of FIG. 5. In this example,
the regular boot sequence part 1 is followed by the PMM
trimming sequence and the trimming sequence of the
remaining trim/cal modules (REF A, ADC, CS, COMP,
TEST TOP). After the last part of the regular bootcode—the
regular boot sequence part 2—the device reaches the user
mode after approximately 240 ps. The user mode is defined
as the time when user code is executed from the device.
Although the process is described primarily for the cold boot
and low power mode wakeup processes, the reset bootcode
sequence is identical to the cold boot sequence and consid-
ered to be therefore a part thereof. We use the phrase
“standard boot” to refer to those aspects that are in common
with both a cold boot, wakeup boot, and reset boot process.

The low power mode LPMx.5 wakeup sequence, illus-
trated in FIG. 11, is similar to the cold boot sequence but
with certain deviations. First, the regular boot sequence part
1 takes 40 us because several boot tasks are only executed
in the cold boot sequence (for example, a CRC check is
performed on one or more sections of the main code/data
memory to verify data integrity). Second, the PMM trim/cal
sequence is omitted in FIG. 11 because the PMM generic
test registers are retained (not shut down) in the low power
mode LPMx.5. The other two parts, trim/cal sequence and
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regular boot sequence part 2, are identical to the cold boot
process. The device reaches the user mode after approxi-
mately 128 us.

To realize multiple savings in time and energy in this
example, the trim/cal data is restored parallel to the regular
low power mode LPMx.5, cold boot, and reset sequences
such that no standard trim and calibration boot sequence is
required. Furthermore, the parity function of the NVL array
ensures a correct boot or wakeup process of the device in
case of failure of the NVL data restore. Hence, a parity check
right after the NVL restore process is included in the
bootcode—if the parity check result determines invalid data,
either the data itself or the parity bit, the regular trim/cal
sequence will be executed, and the device will perform the
boot process regularly. Then an additional store-to-NVL
sequence stores the correct trim and calibration data to the
NVL array. This store sequence is initiated after the regular
trim/cal sequence that restores the correct data (this
sequence is necessary as the NVL arrays are backing up data
from the registers or flip flops. Ergo, the flip flops or
registers must contain the data to be backed up before NVL
store operations can be initiated). Similar to the initial NVL
restore process, the NVL store operations are executed
parallel to the regular boot process.

Special attention was paid to the fact that the device
reaches the user mode in an error free condition from every
start condition, even when the NVL restore process was
invalid. Therefore, the NVL bootcode concept ensures that
the device reaches the user mode with correctly trimmed
generic test registers under all conditions. Even if some of
the conditions are extremely rare, they must be dealt with to
ensure correct device operation. Consequently, in the
described example, there exist four different scenarios for
the cold boot/LPMx.5 and parity correct/fail conditions
(there can be more or less than four scenarios in other
devices). FIGS. 12 and 13 illustrate the parity valid sce-
narios whereas FIGS. 14 and 15 refer to the parity invalid
cases. These NVL timing conditions are based on following
assumptions: 1) the NVL operations are based on the use of
a clock source with a fixed speed of 5 MHz (NVL read/write
performance is proportional to clock speed and thus speeds
up or slows down based on the operating frequency of the
clocks that are available in any particular embodiment of the
invention) and 2) the NVL operations are based on the
implementation of one NVL array handling 256 bits for this
example embodiment. Operations on multiple NVL arrays in
other example implementations can be executed parallel or
in series. The latter will cause extended NVL operation
times.

To implement the NVL concept in the boot and wakeup
processes, a modification of the prior bootcode is made. In
the specific implementation discussed above, only one addi-
tional trigger signal is required for the bootcode sequence.
All other NVL trigger signals are default top-level events.
Consequently, the modification efforts of the bootcode can
be kept low, and the basic principle of the NVL bootcode
concept can be reduced to one basic bootcode modification:
If the parity result from the NVL restore process is 1) valid:
skip the trim/cal sequence OR 2) invalid: execute the regular
trim/cal sequence. The check of the NVL array parity signal
is inserted in the bootcode flow directly before the regular
trim sequence. At this point, the parity check signal is
calculated and stable. Because the additional parity check
sequence is executed in every bootcode run, it is recom-
mended that the necessary boot code operations be short and
efficient.
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Registers Used for Testing, Controlling, and Monitoring
the Processing Device

In addition to the boot and wake up efficiencies, the NVL.
arrays can be accessed and/or utilized in a number of ways
for debugging and monitoring operation of the processing
device 800. In one approach, the processing device includes
control and test registers accessible by user code during a
user mode of the processing device 800. The at least one
processing element 800 can then execute the non-volatile
configurations logic 822 and the non-volatile logic controller
logic 824 to implement testing or monitoring of the pro-
cessing device’s operation through application and monitor-
ing of the control and test registers. The control and test
registers 850 may include one or more of each of the
following in any combination: control and debug registers
832, result status monitoring registers 845, read data capture
registers 835, and write data registers 830. In one example,
the control and test registers include at least one NVL
control register 832 where the processing device 800 con-
trols a debug mode by accessing bits inside the at least one
debug register 832 to support one or more of: signal margin
control, fast debug pattern generation, single row process-
ing, timing adjustments, and application of defined voltages
to the non-volatile bitcells of the NVL mini-arrays 805. In
short, the implementation of the various registers described
herein allows access to bits in the NVL array 805 bits in the
NVL array 805 that may be otherwise inaccessible.

For example, the control and test registers can include at
least one read data capture register 835 directly connected to
an output of a NVL array of the non-volatile logic element
arrays 805. Here, the at least one processing element 820
executes the non-volatile configurations logic 822 and the
non-volatile logic controller logic 824 to capture data from
the non-volatile logic element arrays 805 during a debug
operation by capture registers 835 and to provide access to
the data in the capture registers 835 by user software. For
instance, the processing element 820 can execute the non-
volatile configurations logic 822 and the non-volatile con-
troller logic 824 to capture certain data from the one or more
non-volatile logic arrays 805 during a debug operation, store
the certain data in the capture register 835 as a bit array, and
to provide access to the bit array in the capture register 835
by the user code for testing of the bit array at one time. This
approach is much faster and easier than checking data bit by
bit in the NVL FF based machine registers 810, which may
require hundreds of instructions to accomplish.

In still another example, the processing device 800
includes a test multiplexer 840 connected to receive data
from the data flip flop multiplexer 815 or from a write data
test register 830. In this example, the at least one processing
element 820 directs the non-volatile configurations logic and
the non-volatile logic controller logic to select input data
from the write data test register 830 for the testing or the
monitoring of the processing device’s 800 operation by
writing the appropriate control information into the NVL
control registers 832, resulting in the enabling of the appro-
priate data input to the test multiplexer 840. For instance, the
device may write particular data to the write data register
830 and write the particular data from the write data register
830, via the test multiplexer 840, to a specific portion of the
one or more non-volatile logic arrays 805. Then, during a
debug operation, the particular data is read from the one or
more non-volatile logic arrays 805 to a capture register 835
of the control and test registers for evaluation.
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With this architecture a variety of other testing, control,
and monitoring abilities can be realized. For example, the
following example debug options can be implemented in the
top-level debug registers:

Execution of all standard operations of the NVL control-

ler: Initialization, Read, Read+Writeback, Write

Single row access—each row of the NVL array can be

addressed manually

Complete reset of the integrated NVL system

device specific debug operations to force parity and reset

values

device specific debug operations to force input values of

the NVL array.

In addition to debug features, the registers can capture and
store several monitoring or result signals or flags from the
integrated NVL system. Some monitoring signals of the
top-level debug registers are listed as follows: current parity
signal from the NVL array; parity result from the recent
NVL restore process; a completion signal indicating that the
desired NVL operation has finished; and bootcode has
passed the NVL parity check without errors. Some of these
signals are monitored during the wakeup process and have
to be stored in DFF's for later access via the user application.
The NVL configuration module 822 can control the storage
process integrated into the processing device’s environment.

Because the bootcode concept with the generic test reg-
isters in the trim/cal modules does not cover the complete bit
count of the array, it would not be possible to write all NVL
array rows and access all bits with a defined dataset. For test
reasons and referring again to FIG. 8, an additional test
multiplexer 840 is integrated to select the input data either
from the NVL DFFs 810 or from a dedicated test register
820. With the additional multiplexer 840, all rows of the
NVL array can be set to defined values and either written
into the NVL DFFs or read by the capture registers. The
control signals for the NVL array input multiplexer are
generated by the NVL configuration module. Alternatively,
to save integration effort and area, the same generic test
register can be used as capture and test data register, because
the DFF outputs of the register are connected straight to the
NVL test data MUX, and the read signals for the CPU
interface are directly connected to the 31 bit wide NVL array
output. So configured, the testability of the additional NVL
components is addressed through implementation of overall
four additional generic test registers that are accessible by
user code during the user mode of the device. Therefore, the
debug options can be used to investigate failures of the
device via software control without requiring direct /O
access or additional hardware equipment.

Example Hardware Implementation

FIG. 8 illustrates an overview of one example implemen-
tation. The center of the integrated components represents
the NVL configuration logic 822, which is wrapped around
the NVL controller 824. This module is the interface of the
NVL control logic to the processing device’s 800 digital
toplevel domain. It uses this approach in this configuration
because while the NVL controller 824 provides a range of
possible NVL functional and debug/test operations, addi-
tional logic is needed to integrate the NVL control func-
tionality with the top-level signals that control the process-
ing device 800 overall sequencing and operation during the
various operating modes of the processing device 800 and
also control the transitions between operating modes. The
NVL configuration logic 822 evaluates relevant top-level
signals and provides the input signals to the NVL controller
824. The NVL configuration logic 822 is served with inputs
from the processing device’s 800 PMM, clock distribution
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module (CDM), the debug/control registers 832, and the
NVL array 805. The NVL configuration logic 822 operating
in concert with the NVL controller 824 also provides the
control signals to the NVL DFFs 810, the NVL array 805,
and the data multiplexers 815 and 840 for the NVL array 805
input. The data and status outputs of the NVL array 805 are
connected to the NVL DFFs 810 and to the capture registers
835 and monitoring registers 845 respectively. Further, the
monitoring and debug registers as described above are also
connected to the NVL configuration logic and the NVL
array.

Some of the primary tasks of the NVL configuration logic
822 include: generating the NVL controller inputs from:
debug registers, processing device digital top-level signals,
and PMM and CDM signals; looping the signals from the
NVL controller to: NVL array 805, NVL DFFs 810, and
multiplexer 815; and generating the control signals for the
array test input multiplexer 840 and capture registers 835.

To save the trim/cal standard boot sequence, an imple-
mentation of NVL DFFs into the trim/cal modules ADC, CS,
REF A, COMP and TEST TOP is realized. Although this
implementation is described within the scope of an NVL
implementation of one trim/cal module into the SoC envi-
ronment, these teachings can be applied in other contexts. In
this example, there are 50 standard DFFs replaced with NVL
DFFs in the REF A module. The replacement is executed by
a netlist modification script written in generic form and
which can be extended for other trim/cal modules. The
generic structure leads to a lowered effort in completing the
NVL DFF integration into the remaining trim/cal modules.
The netlist script includes the modification routines for two
trim/cal modules. The generic structure of the script allows
implementation extensions without high effort.

The basic function of the NVL configuration 822 is to
evaluate relevant top-level signals and to provide the correct
input signals for the NVL controller 824. To handle these
interface signals, the control logic of the NVL configuration
822 is based on a mealy state machine. The state machine
contains nine states that are depicted in FIG. 16. The major
transfer conditions and functions of the states are as follows.
The Reset state 1610 is triggered by the system reset. The
result is a complete reset of all instances in the module. After
reset release the next state is always Idle 1620. Idle is the
default mode when no other mode is active and reset is
inactive. It is reacting on input signals from the digital
toplevel to initiate the Default Restore, Default Store or
Debug sequence. Entry into the Default Restore state 1630
is initiated by the brownout (BOR) reset release directly at
the beginning of the boot process. Exit from the Default
Restore state 1630 is triggered by a “done” or “fail” signal
from the NVL controller 824. While in the default restore
state 1630, appropriate control signals are presented to the
NVL controller 824 that initiate the read+writeback opera-
tion. The Default Store 1640 mode is entered when the state
machine receives a signal indicating that the NVL restore
process failed and also that the regular trim/cal sequence has
completed. Exit from the default store 1640 is triggered by
a done from the NVL controller 824. While in the default
restore store 1640, appropriate control signals are presented
to are presented to the NVL controller 824 that initiate the
write operation. The Debug mode 1650 is accessed via
debug register operations in the user application where the
user has complete access to the NVL controller 824. The
Debug mode 1650 is stopped by the user application via
subsequent additional debug register operations.

The four smaller drawn states 1660 were added after the
behavioral simulation to provide additional stability for
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certain NVL controller 824 output signals by preventing
simultaneous changes of input signals of the NVL controller
824. The additional states keep the NVL controller logic 824
in a defined local reset state while the NVL controller input
signals are being changed. With this modification, the NVL
controller 824 provides the output waveforms correctly for
the NVL array 805. All sequential elements in the module
have a dedicated reset input and are served by a 5 MHz
clock.

The secondary function of the NVL configuration 822 is
to evaluate and store important signals of the NVL system
for monitoring reasons. Hence, additional combinational
logic and DFFs are integrated to store, for example, the
parity check value, from the standard NVL restore process.
The DFF output signals are connected to the read interface
in the generic test registers and are therefore accessible via
a user application.

Results for One Example Implementation

To help describe the benefits of the described approach,
the boot time and energy consumption of the NVL based
bootcode are compared to the default bootcode version in
both the applications of cold boot and of LPMx.5 wakeup.
Furthermore, the integration cost of the NVL system is
calculated and compared to the default, unmodified process-
ing device. The conclusions in this section refer to the
implementation of the complete trim/cal bootcode concept.
All presented data concerning the boot time is related to
simulated timings and technical data from internal docu-
mentation. As part of the concept, the impact on the boot
sequences applies to the digital part of the processing
device’s start sequences.

To ensure the redundancy of the cal/trim sequence, a
check of the recent NVL parity value is performed as
described above. Because this check is executed in every
boot sequence, special focus was put on the efficiency of the
test operation. Finally, the time for the software boot code
assessment of the NVL restore parity check result was
reduced to 2.25 us.

Because L.PMx.5 wakeup and cold boot have different
boot times (compare FIGS. 10 and 11), two different results
are obtained regarding the proportion of saved time in the
overall boot process. The following equation depicts the
result of saving the trim/cal sequence during the LPMx.5
wakeup (illustrated in FIG. 12) with an overhead of 2.25 us
for the additional parity check:

tvvz Ly s=129.5 1s—(48 1s—2.25 1s)=83.75 ps

where  th g romes=129.5 1S, g0, ~48.0 ps, and
teneer—=2-25 us. The processing device reaches the user mode
after 83.75 us, which is approximately 35% faster than the
default digital wakeup time.

Furthermore, the boot time for the cold boot was
improved by the NVL integration as illustrated in FIG. 13.
The following equation shows that the NVL based cold boot
sequence lasts 192.75 ps which is approximately 19.2%
lower than in the default case.

ZNVZ,Codeoot:238-5 ps—(48 ps—2.25 us)=192.75 us

where tDefault,CoZdBoot:238'5 1S, tT}"l'm/CaZ:4'8'0 1S, and
teneer—2-25 1Us.

In addition to time savings, energy regularly spent on
executing the trim/cal sequence by the CPU is saved.
However, the additional energy caused by the NVL system
for the restore process, and the additional NVL restore
check sequence must be considered, too. The calculation of
the default power consumption for the trim/cal sequence is
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based on the assumptions: tg,,cacri48
Lpevice zrimicar=270 1A, and Uy, 7,,=1.2'V.

The average current of 270 pA for the device covers a
clock speed of 4 MHz and an FRAM access rate of 3%
during the trim/cal sequence. Consequently, the overall
energy costs of trimming the device by the CPU are:
B pimscarcpe=48 18*270 pA*1.2 V=15.6 nl. In comparison
to the default processing device, the energy consumption of
the NVL system is based on two main parts: The restore
costs of the trim/cal data for the complete NVL system and
the additional boot code verification of the parity check
result have to be considered in the calculation:
Eavt Datarestore—2-325  pl/bit*256  bit=0.595 nl and

Checksequence 229 P5%240 nA*1.2 V=0.648 nJ. The current
consumption of 240 pA of the processing device during the
NVL restore check sequence is lower in contrast to the
trim/cal sequence because no FRAM is accessed in this time.
Both parts, NVL operations and the check sequence, result
in a required energy of 1.24 nJ for the complete NVL restore
process: ETrim/CaZ,ZVVZ:ENVL,DataRestore+ECheckSequence:
1.243 nl. The energy of the default trim/cal sequence (15.6
nl) compared to the NVL trim/cal process (1.24 nJ) results
in a difference of approximately 92% in favor of the NVL
integration. Thus, the NVL energy spent on the trim/cal
process is almost negligible in contrast to the energy con-
sumption of the default sequence.

The following energy calculations of the entire boot
processes cover the average consumption in nJ of the basic
parts of the boot sequences. The energy values cover the
operating frequencies of the device and an adequate FRAM
cache hit rate. Hence, the overall energy consumption of the
digital parts of cold boot and LPMx.5 wakeup of the default
device is calculated as follows:

us,

Erpase. 5. Defauls =Epurit *E pimsCartEpare

such that E7pas, s pefana=11-4 nJ+15.6 nl+7.8
nJ=34.8nJ, and

E ColdBoot,Default:EPartl +E pimicartEpare

such that E . ripoor, pefanr=35-5 1J+15.6 nJ+7.6
nJ=78.7 nl.

The energy calculations for the NVL complete boot
process include the saving of the trim/cal sequence, but also
the additional NVL check and the restore energy of the NVL
system, where

Ep pae 5 v = Epara VE paretE iy car v =204 1,
and

E cotaBooe ML =EPara VE parotE iy car pr =64.3 1.

Because the trim/cal sequence causes a considerable part
of the overall digital LPMx.5 wakeup energy, the NVL
version has a lower energy consumption of about 41%.
Consequently almost half of the digital LPMx.5 wakeup
energy is saved by the NVL trim/cal version. In contrast to
the LPMx.5 wakeup, the influence of the trim/cal sequence
on the overall cold boot energy consumption is lower but
still approximately 18% of the energy is saved by the NVL,
implementation. The results concerning the energy con-
sumption are comparable to the results in boot time in the
cold boot scenario. Also, the NVL implementation saves a
significant part of the LPMx.5 wakeup time and even a
higher part of the LPMx.5 wakeup energy.

Regarding an LPMx.5 application that wakes up periodi-
cally, for instance caused by an I/O interrupt, the digital
bootcode execution might become a considerable part of the

10

15

20

25

30

35

40

45

50

55

60

65

16

overall execution time and energy of the application. The
shortened digital bootcode of the NVL application allows a
faster entry in the user mode and leads again to a faster entry
into the LPMx.5. Thus, the time normally spent on the boot
process is transferred to LPMx.5 sleep time, and the device
only consumes LPMx.5 power instead of the power dissi-
pation during the wakeup process. The influence of the
digital bootcode on the overall energy consumption is high-
est when the wakeup interval and the user code sequence are
short.

Implementation costs include an increased chip area
required for the NVL implementation. The biggest portion is
required for the NVL array, which uses 1.45% of the
complete area of the digital toplevel domain, and the NVLL
configuration logic including the integrated NVL controller,
which uses 0.43% of the complete area of the digital toplevel
domain. The overhead caused by NVL DFFs and the NVL
array MUX structure is in total 0.54% of the complete area
of the digital toplevel domain. The test structures, which
have an additional required area of 0.17%, obtain the
smallest part in the calculation. This amounts to an overall
2.59% additional area caused by the NVL implementation
compared to the entire digital domain area of the unmodified
processing device.

Next, the results in the case of NVL restore failures will
be described. A parity error occurs when the NVL array is
started the first time with un-programmed FRAM cells.
Another cause of a parity error might be when the data inside
the NVL array is corrupted during the normal usage of the
device. Although these events come with some energy costs,
recent results of study of the NVL technology indicate that
the NVL FRAM cells have high reliability. Also, cold boot
events should be rare events for an ultra-low power battery
powered device. Accordingly, the benefits indicated in the
earlier analysis of the described process will typically sur-
pass any costs incurred when executing an error-based
sequence.

With respect to boot time, if the recent NVL restore
process was not successful, the default trim/cal sequence
including the PMM trim/cal sequence will be executed. The
additional NVL store sequence has no influence on the boot
time because it is executed parallel to the regular bootcode.
Thus, the overhead for the standard cold boot sequence due
to the introduction of NVL functionality is only the addi-
tional NVL boot code verification of the NVL parity check
during NVL restore operations (illustrated in FIG. 15),
Where te,1upoor Faitre238-5 Ws+2.25 ps=240.75 ps.

The NVL failure sequence has the same entry point in the
NVL trim/cal register table at a cold boot and an LPMx.5
wakeup. Consequently, the additional NVL restore check,
the default trim/cal sequence, and the PMM trim/cal
sequence are executed in the LPMx.5 wakeup failure
sequence (illustrated in FIG. 14), where t; prz, 5 raizre—129.5
us+2.25 us+12 ps=143.75 ps. Thus, the NVL failure
sequence results in an increased boot time of 0.9% for the
cold boot and 11.0% for the LPMx.5 wakeup compared to
the default boot time.

With respect to energy consumption, the NVL failure
sequence contains the additional NVL store sequence of the
correct trim/cal data. This additional sequence requires no
additional boot time because the NVL store operation is
executed parallel to the regular bootcode execution. How-
ever, the NVL store sequence requires additional energy.
The energy costs of the NVL store sequence are calculated
as follows: Expy parasiore=2-759 pl/bit*256 bit=0.706 nl.

The overall result of the energy consumption in case of an
NVL failure contains both the NVL restore/store sequence
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and the additional NVL check, where Eypr runge—
ENVL,DataRestore+ENVL,DataStore+ECheckSequence:l 95 nl.
Compared to the default execution, the boot processes
including the NVL failure sequence result in a higher energy
consumption of approximately 6% for the LPMx.5 wakeup
and approximately 3% for the cold boot but NVL parity
failure events are extremely rare by design so paying a small
energy penalty in situations that almost never occur is a very
reasonable tradeoff.

Other Approaches

Those skilled in the art will recognize that a wide variety
of modifications, alterations, and combinations can be made
with respect to the above described embodiments without
departing from the scope of the invention. For instance, the
above specific examples only apply the NVL implementa-
tion to five trim/cal modules, while the application of NVL
to many more modules is possible. To reduce the chip area
costs, the logic of the NVL controller for a specific use can
be optimized to reduce gate count of the module thereby
lowering the area and leakage power. Furthermore, the NVL
controller might be modified based on a generic structure so
that a setup for handling different numbers of NVL arrays is
possible.

Also, the trim/cal data is stored once in the NVL FRAM
array and is restored to the trim/cal registers at every
LPMx.5 wakeup, reset, or cold boot. The data in the FRAM
cells will be consistent during the lifetime of the device,
assuming no parity error occurs. If an undetectable data
corruption occurs in the array, the parity function will not
notify the data failure. Then the NVL system will continu-
ally restore the corrupted trim/cal data. Hence, a periodically
refresh of the trim/cal data after a certain number of boot
processes might be an option to improve data integrity. The
refresh could simply be triggered by initiating the NVL
failure sequence. Consequently, the correct trim/cal data is
restored by the bootcode at the next start of the device and
will be stored automatically in the NVL array.

Another possible modification to the current NVL inte-
gration is to improve the performance of the NVL system.
The NVL components are sourced by the 5 MHz MODOSC
clock in the presented implementation. The NVL controller
contains a state machine that is handling the output signals
to the NVL array. Because the state machine is triggered
directly by the clock source, the performance of the entire
NVL operations is proportional to clock speed. The NVL
architecture (controller, arrays, test/control registers, etc) are
capable of very high speed operations; for instance in the
first NVL implementation, the NVL controller was sourced
by a 125 MHz clock. Because the described processing
device does not provide such high frequency clock sources,
higher clock frequency can be generated. This can be done,
for example, by a dedicated oscillator circuit within the NVL
configuration logic. The following calculations illustrate the
difference between NVL operations sourced by 5 MHz and
125 MHz clocks for 1 NVL array:

ESrore,sarz—1 Cycles/row™*8 rows*(5*10%) 7! s=11.2 ps;

[Restoresam =2 Cycles/row™*8 rows™(5*1 0%y s=14.4
hs;

Estore,12507=1 Cycles/row*8 rows™(125% 109!
s=448 ns;

Restore125ME =9 Cycles/tow*8 rows™(125%* 1097t
s=576 ns.

The fast NVL operations using the 125 MHz clock take
place in a very short time period and accordingly open
opportunities for new NVL applications.
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Besides the area optimization of the NVL controller, a
reduction of the power consumption of the entire NVL
system is possible. The NVL control logic, which controls
the store and restore operations during the bootcode execu-
tion, is normally not required during the user code execu-
tion. In fact, an exception is the NVL debug mode. To save
the redundant NVL energy, the NVL control logic can be
placed in an appropriate power domain and shut down when
no NVL operations are required.

Another possible modification includes application of
these basic principles to other bootcode executions. The
trim/cal sequence with its five trim/cal modules is one part
of the digital bootcode execution. This example demon-
strates that the NVL can handle bit transter operations from
NVL FRAM to data registers faster and more efficiently than
the CPU. Those operations are present during the bootcode
execution because data is usually read from ROM or FRAM
and then written into configuration registers of the device.
Therefore, further sequences of the bootcode might also be
suitable for a NVL implementation.

Still another possible modification includes prioritizing
steps of the restoration. The NVL DFFs are organized in
clouds of 31 bits and are connected via the MUX structure
to a dedicated row of the NVL. FRAM array. During store
and restore processes, the NVL rows are addressed in
ascending order which implies that row 1 is accessed first
and row 8 last at every read/write operation. This condition
can be used as an advantage by connecting selected DFFs to
the first rows of the NVL array. This might be useful if
certain DFFs are in need of being restored earlier than the
remaining data, or are for instance timing relevant for the
MCU setup. One way to realize this concept is to assign the
DFFs selected for the NVL integration with priority attri-
butes in the netlist modification script. Thus, high priority
DFFs are connected to lower rows of the NVL array. The
idea might also be transferred to handle multiple arrays,
causing specific DFFs to be connected to defined NVL
arrays or even rows. In contrast, the NVL DFFs with no
priority attribute are connected in regular order to the NVL
array. Moreover, the routing of non-prioritized NVL DFFs
might be optimized in the layout process by connecting them
randomized to the closest NVL array.

Still another application includes the idea of NVL being
controlled by NVL where method to restore intended or
prioritized data from the NVL array first. Then the first
restored data can be used to control the NVL system. An
application is, for example, an NVL enable or disable value
that can be set from the user that allows the user to disable
or enable standard NVL operations. Another feature might
be to store information of the NVL system, such as moni-
toring signals or counter values, which are evaluated at the
beginning of NVL operations and leading to intended con-
trol operations. To realize this concept, it is only necessary
to replace the DFFs in the NVL configuration register with
NVL DFFs and to implement the appropriate control logic.

Yet another modification is to extend the concept of
interleaving the access NVL, and FRAM elements. The
current NVL implementation separates the default FRAM
and the NVL accesses to avoid a power supply failure
caused by high peak currents. The idea of combining both
technologies can be optimized so that they are supplied from
the same power source and can be used almost at the same
time. Consequently and advantageously, no modification of
the FRAM power supply is required. The principal thought
of FRAM interleaving allows the default FRAM operations
to execute normally, and the NVL system operates such that
no NVL operations are executed during this time. A possible
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option to avoid simultaneous accesses of both technologies
is to use the same clock source for NVL and FRAM
operations. In this case, an additional logic gates the clock
signal to the system that is requesting an access. This idea
covers both FRAM/NVL read and write accesses. By pro-
viding the clock signal only to one technology, parallel
operations of NVL and default FRAM are reliably avoided.
The impact on the default FRAM operations of the process-
ing device can be minimized by prioritizing the default
FRAM request to the request of the NVL system. Because
the NVL read/write sequences are based on separate row
operations, it is possible to interrupt the NVL operation after
a row access when a standard FRAM request occurs. There-
fore, the NVL system will pause its current operation, then
the default FRAM access is served, and after the default
FRAM access is completed, the NVL continues with the
paused sequence. With this method, both systems might
have to accept wait sequences until the other system is
finished with its operation, but no additional changes on the
FRAM power supply are necessary.

Such modifications, alterations, and combinations are to
be viewed as being within the ambit of the inventive
concept.

What is claimed is:

1. A method of booting or waking a computing device, the
method comprising:

executing a standard boot sequence to determine at least

a first portion of data for operation of a processing
device configured to store in one or more non-volatile
logic arrays a machine state of the processing device in
response to the processing device’s entering a backup
mode;

restoring, in parallel with the executing of the standard

boot sequence to determine the at least the first portion
of data, at least a second portion of data from the one
or more non-volatile logic arrays for operation of the
processing device, the second portion of data being
different from the first portion of data;

executing a data corruption check for the at least the

second portion of data to confirm validity of the at least
the second portion of data;

then:

in response to the data corruption check confirming
validity of the at least the second portion of data,
executing a standard boot sequence to determine at
least a third portion of data for operation of the
processing device, the third portion of data being
different from the first portion of data and different
from the second portion of data,

or

in response to the data corruption check detecting
invalid data, executing a standard boot sequence to
determine at least the second portion of data for
operation of the processing device and the third
portion of data for operation of the processing
device.

2. The method of claim 1 further comprising in response
to the data corruption check detecting invalid data, storing,
in parallel with the execution of the standard boot sequence
to determine the third portion of data, in the one or more
non-volatile logic arrays the second portion of data deter-
mined using the standard boot sequence.

3. The method of claim 2 wherein the standard boot
sequence to determine the at least the third portion of data
comprises reading data from non-volatile storage devices
sharing a power domain with the one or more non-volatile
logic arrays, and wherein the method further comprises
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executing the storing, in parallel with the execution of the
standard boot sequence to determine the third portion of
data, in the one or more non-volatile logic arrays the second
portion of data determined using the standard boot sequence
at a time other than when the standard boot sequence reads
data from the non-volatile storage devices.

4. The method of claim 1 wherein the restoring, in parallel
with the executing of the standard boot sequence, the at least
the second portion of data from the one or more non-volatile
logic arrays comprises restoring trimming and calibration
data relating to a first set of trimming/calibration modules
for the processing device.

5. The method of claim 1 wherein the standard boot
sequence to determine the at least the first portion of data
comprising reading data from non-volatile storage devices
sharing a power domain with the one or more non-volatile
logic arrays, and wherein the method further comprises
executing the restoring, in parallel with the executing of the
standard boot sequence to determine the at least the first
portion of data, the at least the second portion of data from
the one or more non-volatile logic arrays at a time other than
when the standard boot sequence reads data from the non-
volatile storage devices.

6. The method of claim 1 further comprising implement-
ing testing or monitoring of the processing device’s opera-
tion through application of control and test registers acces-
sible by user code during a user mode of the processing
device.

7. The method of claim 6 wherein the implementing the
testing or the monitoring further comprises one or more of:
debugging of execution of standard operations of a control-
ler of the non-volatile logic arrays, accessing a single row of
a non-volatile logic array of the non-volatile logic arrays for
debugging, executing a complete resetting of a non-volatile
logic element array system for the processing device, forcing
parity values for the processing device, forcing reset values
for the processing device, forcing input values for one or
more of the non-volatile logic arrays, monitoring a current
parity signal for a non-volatile logic array of the non-volatile
logic arrays, monitoring a parity check result from a recent
determination of the at least the second portion of data from
a standard boot sequence, monitoring a restoration of data in
the non-volatile logic arrays using the standard boot
sequence, monitoring storage of data in the non-volatile
logic arrays using the standard boot sequence, monitoring
passing of bootcode after execution of the data corruption
check without errors, or controlling a debug mode of the
processing device by a controller of the one or more non-
volatile logic arrays by accessing bits inside debug registers
of the control and test registers to support one or more of:
signal margin control, fast debug pattern generation, single
row processing, timing adjustments, and application of
defined voltages to non-volatile storage bitcells of the non-
volatile logic arrays.

8. The method of claim 6 further comprising:

capturing data from the non-volatile logic arrays during a

debug operation by a capture register of the control and
test registers directly connected to an output of a
non-volatile logic element array of the non-volatile
logic arrays; and

providing access to the data in the capture register by user

software.

9. The method of claim 6 further comprising selecting
input data for the testing or the monitoring of the processing
device’s operation from either a data flip flop for a non-
volatile logic array of the non-volatile logic arrays or from
one of the control and test registers using a multiplexer.
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10. The method of claim 1 further comprising during a
boot process for the computing device, determining with the
data corruption check the presence of invalid data where
there is an un-programmed non-volatile logic array of the
one or more non-volatile logic arrays, and in response to the
determining the presence of invalid data where there is the
un-programmed non-volatile logic array, executing a stan-
dard boot sequence to determine data for the un-pro-
grammed non-volatile logic array.

11. A computing device apparatus providing non-volatile
logic based computing, the apparatus comprising:

a processing device comprising:

one or more non-volatile logic arrays;

a plurality of data flip flop circuit elements;

a data flip flop multiplexer connected to pass data from
the plurality of data flip flop circuit elements to the
one or more non-volatile logic arrays;

at least one processing element configured to execute a
non-volatile configurations logic and a non-volatile
controller logic; and

control and test registers accessible by user code during
a user mode of the processing device,

wherein the at least one processing element is further

configured to execute the non-volatile configurations
logic and the non-volatile controller logic to implement
testing or monitoring of the processing device’s opera-
tion through application of the control and test registers
in response to application code.

12. The computing device apparatus of claim 11 wherein
the control and test registers comprise at least one debug
register,

wherein the at least one processing element is further

configured to execute the non-volatile configurations
logic and the non-volatile controller logic to control a
debug mode of the processing device by accessing bits
inside the at least one debug register to support one or
more of: signal margin control, fast debug pattern
generation, single row processing, timing adjustments,
and application of defined voltages to non-volatile
storage bitcells of the non-volatile logic arrays.

13. The computing device apparatus of claim 11 wherein
the control and test registers comprise at least one capture
register directly connected to an output of a non-volatile
logic array of the non-volatile logic arrays,

wherein the at least one processing element is further

configured to execute the non-volatile configurations

logic and the non-volatile controller logic to capture

certain data from the non-volatile logic arrays during a

debug operation, store the certain data in the at least

one capture register as a bit array, and to provide access
to the bit array in the at least one capture register by the
user code for testing of the bit array at one time.

14. The computing device apparatus of claim 11 further
comprising a test multiplexer connected to receive data from
the data flip flop multiplexer or from one of the control and
test registers,

wherein the at least one processing element is further

configured to execute the non-volatile configurations
logic and the non-volatile logic controller logic to
select input data for the testing or the monitoring of the
processing device’s operation by controlling the test
multiplexer.

15. The computing device apparatus of claim 14 wherein
the control and test registers comprise at least one write data
register configured to connect to the test multiplexer,

wherein the at least one processing element is further

configured to execute the non-volatile configurations
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logic and the non-volatile controller logic to write

particular data to the write data register and write the

particular data from the write data register to a specific
portion of the one or more non-volatile logic arrays.

16. The computing device apparatus of claim 15 wherein
the control and test registers comprise at least one capture
register directly connected to an output of a non-volatile
logic array of the non-volatile logic arrays,

wherein the at least one processing element is further

configured to execute the non-volatile configurations

logic and the non-volatile controller logic to, during a

debug operation, read the particular data from the one

or more non-volatile logic arrays to a capture register of
the control and test registers for evaluation via the
application code.

17. The computing device apparatus of claim 11 wherein
the at least one processing element is further configured to
execute the non-volatile configurations logic and the non-
volatile controller logic to implement the testing or the
monitoring by performing one or more of: debugging of
execution of standard operations of a controller of the
non-volatile logic arrays, accessing a single row of a non-
volatile logic array of the non-volatile logic arrays for
debugging, executing a complete resetting of a non-volatile
logic element array system for the processing device, forcing
parity values for the processing device, forcing reset values
for the processing device, forcing input values for one or
more of the non-volatile logic arrays, monitoring a current
parity signal for a non-volatile logic array of the non-volatile
logic arrays, monitoring a parity check result from a recent
determination of an at least second portion of data from a
standard boot sequence, monitoring a restoration of data in
the non-volatile logic arrays using the standard boot
sequence, monitoring storage of data in the non-volatile
logic arrays using the standard boot sequence, monitoring
passing of bootcode after execution of a data corruption
check without errors, or controlling a debug mode of the
processing device by a controller of the one or more non-
volatile logic arrays by accessing bits inside debug registers
of the control and test registers to support one or more of:
signal margin control, fast debug pattern generation, single
row processing, timing adjustments, and application of
defined voltages to non-volatile storage bitcells of the non-
volatile logic arrays.

18. A computing device apparatus providing non-volatile
logic based computing, the apparatus comprising:

a processing device comprising:

one or more non-volatile logic element arrays;

a plurality of data flip flop circuit elements;

a data flip flop multiplexer connected to pass data from
the plurality of data flip flop circuit elements to the
one or more non-volatile logic element arrays;

at least one processing element configured to execute a
non-volatile configurations logic and a non-volatile
controller logic,

wherein the non-volatile configurations logic is config-
ured to evaluate inputs regarding the processing
device’s toplevel and to provide inputs to the non-
volatile controller logic;

wherein the non-volatile controller logic is configured
to control activity of the one or more non-volatile
logic element arrays and the data flip flop multi-
plexer.

19. The apparatus of claim 18 wherein non-volatile con-
figurations logic is based on a state machine.

20. The apparatus of claim 19 wherein the state machine
includes:
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a reset state triggered by a system reset and that results in
a reset of modules of the processing device followed by
transition to an idle state;

the idle state that represents a state of inactivity of the
processing device and which is configured to react to
input signals from a top level domain of the processing
device to initiate a default restore state, a default store
state, or a debug state;

the default restore state configured to be initiated by a
system reset release at a beginning of a boot process
and stopped by a signal from the non-volatile logic
element array regarding a restore process;

the default store state configured to be entered in response
to a boot sequence determination of data to store in the
non-volatile logic element array;

the debug state configured to be accessed and stopped by
a user application.

#* #* #* #* #*
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